P P SAVANI UNIVERSITY

Third Semester of B. Tech. Examination December 2022

SEME2011 Engineering Thermodynamics

30.11.2022, Wednesday

Instructions:

Time: 10:00 a.m. To 12:30 p.m.

Maximum Marks: 60

	 The question paper comprises of two sections. Section I and II must be attempted in separate answer sheets. Make suitable assumptions and draw neat figures wherever required. Use of scientific calculator is allowed. 						
		SECTION - I					
	Q - 1	Fill in the Blanks (Any Five) [0.1]	5]	CO	BTL		
	(i)	Which of the following is the extensive property of a thermodynamic system?	1	1	1		
		a) Pressure b) Volume c) Temperature d) Density					
	(ii)	The maximum entropy means there is a) Minimum availability for conversion into work.		2	1		
		b) Minimum unavailability for conversion into work.					
		c) Maximum availability for conversion into work					
	(iii)	The compressibility chart gives best results in for all gases.		3	1		
		a) Critical point b) Vicinity of critical point					
		c) Any point d) all of the above.					
((iv)	Kelvin-Planck's law deals with		2	2		
		a) conservation of energy b) conservation of heat					
		c) conservation of mass					
		d) conversion of heat into work					
	(v)	The difference of reversible maximum work and the actual work called		3	2		
		a) irreversibility b) unavailability					
		c) reversibility d) availability					
	(vi)	is conserved but is not conserved.		3	2		
		a) exergy, energy					
		b) energy, exergy					
		c) both exergy and energy are conserved					
		d) neither exergy nor energy is conserved					
	(vii)	Which of the following thermodynamic law gives the concept of enthalpy?		1	1		
		a) First law of thermodynamics					
		b) Second law of thermodynamics					
		c) Third law of thermodynamics					
		d) Fourth law of thermodynamics					
	Q - 2 (a)	Write the limitation of first law of thermodynamics. Explain the second law of	5]	1	2		
		thermodynamics by Clausius statement and Kelvin-Plank statement					

Q - 2 (b)	Differentiate between the followings	[05]	1	3
	1)Point function and path function,			
	2) Microscopic approach and macroscopic approach,			
	3) Pure substance and working substance			
	OR			
Q - 2 (a)	What do you mean by Reversible Work?	[05]	2	3
Q - 2 (b)	To a closed system 150 kJ of work is supplied. If the initial volume is 0.6 m3 and	[05]	2	
	pressure off the system changes as p=8-4V, where p is in bar and V is in m3,			
	determine the final volume and pressure of the system.			
Q-3(a)	Write down the general energy equation for steady flow system and simplify	[05]	2	4
	when applied for the following systems:		/	
	centrifugal water pump			
	Reciprocating air Compressor			
	Steam nozzle			
	Steam turbine			
	Gas turbine			
Q-3(b)	Explain Reversible and Irreversible process with example	[05]	3	4
	OR			
0 2(a)	Describe the morling of a Counct and	[05]	2	2
Q - 3 (a)	Describe the working of a Carnot cycle.	[05]	3	3
Q-3 (b)	A heat pump operates between two identical bodies which are at temperature	[05]	2	4
	T1 and cools one of the bodies to a temperature T2 (T2 <t1). by="" by<="" for="" given="" heat="" is="" minimum="" operation="" prove="" pump="" required="" th="" that="" the="" this="" work=""></t1).>			
	W=Cp [T12 /T22 +T2-2T1]			
	Where Cp is the specific heat which is same for both bodies.			
Q-4	Attempt any one	[05]		
(I)	Attempt any one. State and explain the gouy-stodola theorem.	[05]	3	3
(ii)	Give the Exergy balance for steady flow system.		2	3
Q-1	SECTION – II Fill in the Blanks (Any Five)	[05]		
(i)	For a high compression ration whose efficiency is higher diesel or Petrol	[o3]	1	5
0	engine?			
(ii)	Relation between C.O.P of Heat pump and C.O.P of refrigerator		1	1
	a) C.O.P (H.P) + C.O.P (ref) = 1 b) C.O.P (H.P) - C.O.P (ref) = 1			
	c) C.O.P (ref) - C.O.P (H.P) = 1 d) none of above			
(iii)	The efficiency of Brayton cycle depends on		1	1
()	a) Compression ratio b) Pressure ratio c) a & b d) no one		-	1
	a) 1			

(iv)	In which of one the steam is taken back for heating again in boiler?				1	2	
	a) Regeneration b) rel	neating - c) preheating	d) intercooling				
(v)	Efficiency of Diesel cycle d	loes not depend on			1	2	
	a) Compression ration b)	Pressure ratio c) Cut off ratio	d) no one				
(vi)	What is cut off ratio for di	esel cycle?			1	1.	
	a) V1/v2 b) v2/	v1 c) v3/v2	d) v1/v4				
(vii)	Mollier diagram is the gra	ph of?			1	1	
	a) S Vs H b) P V	s V c) H Vs S	d) T Vs S				
Q-2(a)	Analyze reheating in Rank	tine cycle with necessary diagra	ms and how efficiency	[05]	4	4	
	is improved?						
Q-2(b)	Q - 2 (b) In Air Standard Diesel cycle , the compression ratio is 16, and at the beginning						
	of isentropic compression, the temperature is 15°C and the pressure is 0.1 Mpa.						
	Heat is added until the temperature at the constant pressure process is 1480°C.						
	calculate a) cut-off ratio, b) heat supplied per kg of air and	c) cycle efficiency.				
OR							
Q-2(a)	Q - 2 (a) Understand the use of Otto cycle efficiency and evaluate the efficiency equation					5	
Q-2(b) Analyze intercooling in Brayton cycle with necessary diagrams and how [6]					4	4	
	efficiency is improved?						
Q-3(a)	Evaluate Vander Wall's eq	uation and explain Dalton's law	of partial pressure.	[05]	5	5	
Q-3(b)	Apply the concept of Diese	el cycle and derive the efficiency	equation.	[05]	4	3	
		OR					
Q-3(a)	Create the VCR cycle with	example of Refrigerator/Windo	w Air Conditioner.	[05]	4	6	
Q-3(b)	3 (b) Evaluate the difference between VCR cycle VS VAR cycle.			[05]	4	5	
Q-4	Attempt any one/two.			[05]			
(i)	Analyze the law of corresponding states and establish the relationship between				5	5	
reduced properties.							
(ii) Apply the Dalton's law of partial pressure with an example.					5	3	

CO : Course Outcome Number BTL : Blooms Taxonomy Level							
Level of Bloom's Revised Taxonomy in Assessment							
1: Remember 2: Understand 3: Apply							
4: Analyz		5: Evaluate	6: Create				

Da	ma	2	n.f	2
Pa	25	J	UI	J